Thalamus parcellation using multi-modal feature classification and thalamic nuclei priors

نویسندگان

  • Jeffrey Glaister
  • Aaron Carass
  • Joshua V. Stough
  • Peter A. Calabresi
  • Jerry L. Prince
چکیده

Segmentation of the thalamus and thalamic nuclei is useful to quantify volumetric changes from neurodegenerative diseases. Most thalamus segmentation algorithms only use T1-weighted magnetic resonance images and current thalamic parcellation methods require manual interaction. Smaller nuclei, such as the lateral and medial geniculates, are challenging to locate due to their small size. We propose an automated segmentation algorithm using a set of features derived from diffusion tensor image (DTI) and thalamic nuclei location priors. After extracting features, a hierarchical random forest classifier is trained to locate the thalamus. A second random forest classifies thalamus voxels as belonging to one of six thalamic nuclei classes. The proposed algorithm was tested using a leave-one-out cross validation scheme and compared with state-of-the-art algorithms. The proposed algorithm has a higher Dice score compared to other methods for the whole thalamus and several nuclei.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Method for Thalamus Parcellation Using Multi-modal Feature Classification

Segmentation and parcellation of the thalamus is an important step in providing volumetric assessment of the impact of disease n brain structures. Conventionally, segmentation is carried out on T1-weighted magnetic resonance (MR) images and nuclear parcellation using diffusion weighted MR images. We present the first fully automatic method that incorporates both tissue contrasts and several der...

متن کامل

Parcellation of the thalamus using diffusion tensor images and a multi-object geometric deformable model

The thalamus is a sub-cortical gray matter structure that relays signals between the cerebral cortex and midbrain. It can be parcellated into the thalamic nuclei which project to different cortical regions. The ability to automatically parcellate the thalamic nuclei could lead to enhanced diagnosis or prognosis in patients with some brain disease. Previous works have used diffusion tensor image...

متن کامل

Defining thalamic nuclei and topographic connectivity gradients in vivo

The thalamus consists of multiple nuclei that have been previously defined by their chemoarchitectual and cytoarchitectual properties ex vivo. These form discrete, functionally specialized, territories with topographically arranged graduated patterns of connectivity. However, previous in vivo thalamic parcellation with MRI has been hindered by substantial inter-individual variability or discrep...

متن کامل

Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus.

Parcellation of the human thalamus based on cortical connectivity information inferred from non-invasive diffusion-weighted images identifies sub-regions that we have proposed correspond to nuclei. Here we test the functional and anatomical validity of this proposal by comparing data from diffusion tractography, cytoarchitecture and functional imaging. We acquired diffusion imaging data in elev...

متن کامل

Comparison of functional thalamic segmentation from seed-based analysis and ICA

Information flow between the thalamus and cerebral cortex is a crucial component of adaptive brain function, but the details of thalamocortical interactions in human subjects remain unclear. The principal aim of this study was to evaluate the agreement between functional thalamic network patterns, derived using seed-based connectivity analysis and independent component analysis (ICA) applied se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of SPIE--the International Society for Optical Engineering

دوره 9784  شماره 

صفحات  -

تاریخ انتشار 2016